Пенные пожарные стволы. Технические характеристики ручных пожарных стволов Какие стволы формируют пенную струю низкой кратности

Для подачи и получения огнетушителей пены низкой и средней кратности применяют воздушно - пенные стволы (СВП) и генераторы пены средней кратности (ГПС).

Воздушно - пенные стволы предназначены для получения воздушно механической пены низкой кратности. Подразделяются по конструкции на лафетные (ПЛСК-П20, ПЛСК-С20, ПЛСК-С60), с эжектирующим (СВПЭ-2, СВПЭ-4, СВПЭ-8) и без эжектирующего (СВП, СВП-2, СВП-4, СВП-8) устройства. Они надежны в работе, просты по устройству, широко применяются при тушении пожаров. Причинами получения ВМП низкого качества из таких стволов м.б. засорение конусного насадка и плохой пенообразователь. Ствол состоит из литого (AL сплава) корпуса, соединительной цапковой головки и трубы с восемью отверстиями. Соединительную головку крепят к корпусу на резьбе, трубу - четырьмя винтами, равномерно расположенными по окружности.

Принцип работы: водный раствор пенообразователя, подаваемый под напором, распыляется в конусном насадке и, протекая по нему, создает разрежение, воздух через отверстия в трубе устремляется в зону пониженного давления и смешивается с раствором, в результате образуется воздушно - механическая пена низкой (6-10) кратности, которую направляют в очаг пожара. СВП с эжектирующим устройством имеют дополнительный ниппель, который ввернут в корпус. На ниппель надевают резиновый шланг, по которому всасывается пенообразователь.

Подготовка водного раствора пенообразователя происходит в корпусе ствола. При этом давление воды в стволе должно быть не менее 0.6 МПа. Оба ствола имеют номинальную производительность по пене 4 куб.м/мин при кратности пены 8. Длина наклонной пенной струи 15-20 м. Масса стволов 1.7 - 2.5 кг., длина 71 см.

Корпус ствола не менее одного раза в год подвергают гидравлическому испытанию давлением 0.9 МПа в течении 1 мин. Кроме того, стволы с эжектирующим устройством испытывают разрежением. При давлении воды 0.6 МПа разрежение в камере корпуса должно быть не менее 80 кПа (600 мм рт.ст.).

Генератор пены средней кратности (ГПС) предназначен для получения и подачи воздушно-механической пены средней кратности в очаг пожара. Существует несколько типоразмеров генераторов: ГПС-200, ГПС-600, ГПС-2000. Принцип работы их одинаков, они различаются только геометрическими размерами и производительностью 200-2000 л/с пены кратностью 100. Для получения пены используют 4 - 6 % - ный раствор пенообразователя ПО-1 и равноценных ему пенообразователей.

Работает генератор следующим образом: водный раствор пенообразователя через распылитель выбрасывается на пакет сеток, создавая в корпусе разрежение, воздух через заднюю открытую часть корпуса (конфузор) устремляется в зону пониженного давления, на сетках водный раствор пенообразователя интенсивно перемешивается с воздухом образуются пузырьки примерно одинакового размера. Полученную струю пены направляют в очаг пожара.


Для более качественного тушения пожара применяют комбинированный способ подачи пены: нижний слой создают при помощи СВП, верхний при помощи ГПС.

Особое внимание обращают на состояние пакета сеток, предохраняя их от коррозии и механических повреждений. Распылитель генератора не реже одного раза в год испытывают гидравлическим давлением 0.9 МПа в течение 1 мин.

Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее кратность - отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10), средней (от 10 до 200) и высокой (свыше 200) кратности. В зависимости от кратности получаемой пены классифицируются пенные стволы (рис.3.23).

Пенный ствол – устройство, устанавливаемое на конце напорной линии для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы СВП и СВПЭ. Они имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис.3.24) состоит из корпуса 8, с одной стороны которого навернута цапковая соединительная головка 7 для присоединения ствола к рукавной напорной линии соответствующего диаметра, а с другой – на винтах присоединена труба 5, изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная 6, вакуумная 3 и выходная 4. На вакуумной камере расположен ниппель 2 диаметром 16 мм для присоединения шланга 1, имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола не менее 600 мм рт. ст. (0,08 МПа).

Принцип образования пены в стволе СВП (рис.3.25) заключается в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола 1, создает в конусной камере 3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе 4 ствола. Поступающий в трубу воздух, интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает на пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бочка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл.3.10.

Таблица 3.10.

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности.

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл.3.11.

Таблица 3.11

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис.3.26): корпуса генератора 1 с направляющим устройством, пакета сеток 2, распылителя центробежного 3, насадка 4 и коллектора 5. К коллектору генератора при помощи трех стоек крепится корпус распылителя, в котором вмонтирован распылитель 3 и муфтовая головка ГМ-70. Пакет сеток 2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой с размером ячейки 0,8 мм. Распылитель вихревого типа 3 имеет шесть окон, расположенных под углом 12 0 , что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок 4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. За счет эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

В качестве пенных пожарных стволов комбинированного типа (рис.3.27) рассмотрим установки комбинированного тушения пожаров (УКТП) «Пурга», которые могут быть ручного, стационарного и мобильного исполнения. Они предназначены для получения воздушно-механической пены низкой и средней кратности. Технические характеристики УКТП различного исполнения представлены в табл.3.12. Кроме того, для этих стволов разработаны диаграмма радиуса действия и карта орошения (рис.3.27), что позволяет более четко оценивать их тактические возможности при тушении пожаров.


Таблица 3.12

Показатель Размерность Установка комбинированного тушения пожара (УКТП) типа
Пурга Пурга Пурга Пурга 10.20.30 Пурга 20.60.80 Пурга 30.60.90 Пурга 200-240
Производительность по раствору пенообразователя л/с 5…6 200…240
Производительность по пене средней кратности л/с
Дальность подачи струи пены средней кратности м 25…30 45…50 90…100
Рабочее давление перед стволом МПа 0,8 0,8 0,8 0,8 0,8 0,9…1,2 1,0…1,4
Кратность пены 60…70 30…40
Расход пенообразователя л/с 0,36 0,4 0,8 1,8 4,8 5,0 12,0

Подписи к рисункам

Рис.3.1. Схемы забора и подачи воды

а – от цистерны пожарного автомобиля; б – от открытого водоисточника; в – от водопроводной сети;

1 – магистральная рукавная линия; 2 – разветвление трехходовое; 3 – рабочая рукавная линия; 4 – ствол пожарный ручной; 5 – всасывающий рукав; 6 –напорно-всасывающий рукав; 7 – рукавный водосборник; 8 – рукав напорный для работы от гидранта.

Рис.3.2. Конструктивное исполнение всасывающих и напорно-всасывающих рукавов

1 – наружный текстильный слой; 2 – текстильный слой; 3 – внутренняя резиновая камера; 4 – проволочная спираль; 5 – промежуточный резиновый слой; 6 – текстильный слой; 7 – головка соединительная всасывающая.

Рис.3.3. Классификация пожарных напорных рукавов

Рис.3.4. Конструкция напорного прорезиненного рукава

1 – армирующий каркас; 2 – внутренний слой; 3 – клеевой слой

Рис.3.5. Конструкция напорного латексированного рукава

1 – армирующий каркас; 2 – внутренний слой; 3 наружная латексная пленка

Рис.3.6. Конструкция напорного рукава с двусторонним покрытием

1 – армирующий каркас; 2 – внутренний слой; 3 наружный защитный слой

Рис.3.7. Потери напора в одном рукаве длиной 20 м в зависимости от расхода протекаемой воды

1 – в рукаве с диаметром 77 мм; 2 – в рукаве с диаметром 66 мм

Рис.3.8. Зависимость коэффициента теплопроводности материала рукавов от температуры окружающей среды

1 – прорезиненный рукав; 2 – льняной рукав; 3 – латексный рукав

Рис.3.9. Классификация гидравлического оборудования

Рис.3.10. Всасывающая пожарная сетка

1 – соединительная всасывающая головка; 2 – обратный клапан; 3 – рычаг поднятия клапана; 4 – решетка

Рис.3.11. Разветвление трехходовое

1 – маховичок; 2 – сальниковое уплотнение; 3 – шпиндель; 4 – ручка; 5 – входной патрубок; 6 – тарельчатый клапан; 7 – выходной патрубок; 8 – фигурный корпус

Рис.3.12. Соединительная рукавная головка

1 – втулка; 2 – уплотняющее резиновое кольцо; 3 – клык; 4 – обойма

Рис.3.13. Переходная головка

1; 3 – несущая втулка; 2; 4 – обойма

Рис.3.14. Классификация пожарных стволов

Рис.3.15. Ствол ручной пожарный РС-70

1 – корпус; 2 – успокоитель; 3 –соединительная головка; 4 –ремень; 5 –оплетка; 6 – насадок

Рис.3.16. Ствол ручной пожарный перекрывной КР-Б

1 – корпус; 2 – кран пробковый; 3 – насадок; 4 – ремень; 5 – оплетка; 6 – соединительная головка

Рис.3.17. Ствол ручной пожарный РСК-50

1,2,9 – каналы; 3 – пробковый кран; 4 – ручка; 5 – корпус; 6 – соединительная головка; 7,10 – отверстия; 8 – полость; 11 – тангенциальные каналы; 12 – насадок

Рис.3.18. Ствол-распылитель ручной РС-А (РС-Б)

1 – распылитель; 2 – устройство перекрытия потока воды; 3 – корпус; 4 – соединительная головка; 5 – оплетка; 6 – ремень

Рис.3.19. Ствол ручной комбинированный ОРТ-50

1 – корпус; 2 – головка соединительная; 3 – рукоятка; 4 – головка; 5 – пеногенератор

Рис.3.20. Характерные участки для струй ручных пожарных стволов

Рис.3.21. Силы реакции струй ручных пожарных стволов

а – для стволов пистолетного типа; б – для ручных пожарных стволов

Рис.3.22. Переносной пожарный лафетный ствол ПЛС-П20

1 – корпус ствола; 2 – воздушно-пенный насадок; 3 – напорный патрубок; 4 – приемный корпус; 5 – фиксирующее устройство; 6 – рукоятка управления

Рис.3.23. Классификация пенных пожарных стволов

Рис.3.24. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера; 5 – направляющая труба; 6 – приемная камера; 7 – соединительная головка; 8 – корпус

Рис.3.25. Ствол воздушно-пенный СВП

Рис.3.26. Генератор пены средней кратности ГПС-600

1 – корпус генератора; 2 – пакет сеток; 3 – распылитель центробежный; 4 – насадок; 5 – коллектор

Рис.3.27. Диаграмма радиуса действия и карта орошения УКТП «Пурга-7»

Вопрос№2 Требования охраны труда при ликвидации последствий ДТП

Общие требования безопасности

1.1. К выполнению спасательных работ на месте ДТП допускаются лица, прошедшие медицинскую комиссию, специальное обучение и аттестацию на статус спасателя РФ, обученные безопасным методам спасательных работ.

1.2. При выполнении работ на месте ДТП спасатель обязан строго выполнять требования данной инструкции.

1.3. ДТП влечет за собой повреждения бензобаков с горючим и возможным дальнейшим воспламенением автомобиля, поэтому необходимо соблюдение правил пожарной безопасности.

1.4. Работы, проводимые в данной ЧС могут быть связаны с частичной разборкой автомобиля проводимой как вручную, так и с применением средств малой механизации, специального гидравлического и другого инструмента.

1.5. Спасатель должен уметь оказывать первую медицинскую помощь, а также владеть методами транспортировки пострадавших.

Требования техники безопасности перед началом работ

Перед началом работ спасатели обязаны:

2.1. Определить круги безопасности.

2.2. Определить опасную зону и принять меры для исключения возможности на хождения в опасной зоне посторонних людей и автомашин.

2.3. Оградить опасную зону, нанести соответствующую маркировку.

2.4. Принять меры но фиксации автомобиля, исключающей самопроизвольное движение автомобиля.

2.5. Отключить клеммы аккумулятора поврежденного автомобиля.

2.6. Для предотвращения возможного возгорания горюче-смазочных материалов обеспечить нахождениеогнетушителей непосредственно в опасной зоне.

2.7. В ночное время, а также в условиях плохой видимости, место проведения АСР должно быть освещено.

Требования техники безопасности во время работы

Во время проведения работ по спасению пострадавших при ДТП спасатели обязаны:

3.1. Быть одетыми в специальную одежду и иметь специальное снаряжение и оборудование.

3.2. Жестко зафиксировать автомобиль специальными подпорками или подручными средствами (и постоянно контролировать фиксацию).

3.3. Во избежании возгорания автомобиля использовать только искронеобразующее оборудование.

3.4. При разрезании автомобиля гидравлическим оборудованием соблюдать требования правил использования соответствующего инструмента.

3.5. Во время проведения работ по деблокации пострадавшего из поврежденною автомобиля, следить за элементами конструкции кузова автомобиля, чтобы они не травмировали спасателей и пострадавшего.

Требования безопасности в аварийных ситуациях.

4.1. При возникновении неисправностей используемого оборудования необходимо доложить о случившемся ответственному за проведение работ и действовать в соответствии с его указаниями. Работа неисправным оборудованием запрещается.

4.2. В случае получения травмы во время работ доложить о случившемся ответственному за проведение работ, освободить пострадавшего от травмирующего фактора, эвакуировать из опасной зоны и оказать первую медицинскую помощь.

Требования безопасности по окончании работ.

5.1. Доложить ответственному за проведение работ о выполненных работах.

5.2. Привести в порядок спецодежду, индивидуальные средства защиты, оборудование и инструменты.

5.3. О выявленных недостатках старший ПСГ должен доложить командиру отряда.

Вопрос№3 Воздушно-пенные стволы: назначение, классификация, устройство, характеристика.

Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее кратность - отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10), средней (от 10 до 200) и высокой (свыше 200) кратности. В зависимости от кратности получаемой пены классифицируются пенные стволы (рис.3.23).

Пенный ствол – устройство, устанавливаемое на конце напорной линии для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы СВП и СВПЭ. Они имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис.3.24) состоит из корпуса 8, с одной стороны которого навернута цапковая соединительная головка 7 для присоединения ствола к рукавной напорной линии соответствующего диаметра, а с другой – на винтах присоединена труба 5, изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная 6, вакуумная 3 и выходная 4. На вакуумной камере расположен ниппель 2 диаметром 16 мм для присоединения шланга 1, имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола не менее 600 мм рт ст (0,08 МПа).

Принцип образования пены в стволе СВП (рис.3.25) заключается в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола 1, создает в конусной камере 3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе 4 ствола. Поступающий в трубу воздух, интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает на пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бочка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл.3.10.

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности.

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл.3.11.

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис.3.26): корпуса генератора 1 с направляющим устройством, пакета сеток 2, распылителя центробежного 3, насадка 4 и коллектора 5. К коллектору генератора при помощи трех стоек крепится корпус распылителя, в котором вмонтирован распылитель 3 и муфтовая головка ГМ-70. Пакет сеток 2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой с размером ячейки 0,8 мм. Распылитель вихревого типа 3 имеет шесть окон, расположенных по углом 12 0 , что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок 4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. За счет эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

В качестве пенных пожарных стволов комбинированного типа (рис.3.27) рассмотрим установки комбинированного тушения пожаров (УКТП) «Пурга», которые могут быть ручного, стационарного и мобильного исполнения. Они предназначены для получения воздушно-механической пены низкой и средней кратности. Технические характеристики УКТП различного исполнения представлены в табл.3.12. Кроме того, для этих стволов разработаны диаграмма радиуса действия и карта орошения (рис.3.27), что позволяет более четко оценивать их тактические возможности при тушении пожаров.

Маркировка ручных пожарных стволов: Р – ручной, С – ствол, П – перекрывной, К комбинированный, З – с защитной завесой, 50(70) – условный проход Dу50(Dу70).

Техника безопасности при работе со стволами:

Стволы должны исправными и герметичными. Герметичность стволов должна быть обеспечена при испытании гидравлическим давлением в 1,5 раза превышающем рабочее, а герметичность соединений – при рабочем давлении. Не допускается появление воды в виде капель.

Запрещается надевать на себя лямку присоединенного к рукавной линии пожарного ствола при подъеме на высоту и при работе на высоте, подавать воду в незакрепленные рукавные линии и до выхода ствольщиков на исходные позиции.

Подавать воду в рукавные линии следует постепенно, плавно повышая давление.

Работа на пожарной лестнице со стволом допускается только после закрепления пояс-

ным карабином за ступеньку.

Работа со стволом на крышах с крутыми скатами – обязательна с закреплением страхо-

вочными веревками за конструкции.

Работа со стволом на высотах должна осуществляться расчетом не менее двух человек.

Запрещается оставлять пожарный ствол без надзора даже после прекращения подачи

Лафетные пожарные стволы: назначение, устройство, характеристика. Техника безопасности при работе со стволами.



Лафетные пожарные стволы предназначены для получения мощных водяных или пенных струй при тушении крупных пожаров в случае недостаточной эффективности ручных пожарных стволов.

Лафетные пожарные стволы подразделяются на стационарные (С) – смонтированные на пожарном автомобиле, вышке или промышленном оборудовании (например – ЛС-С20У, –С40У и т.д.), возимые (В) – на прицепе и переносные (П) – (например СЛК-П20, ЛС-П20У, ЛСД-20У и т.д.)

Кроме того, стволы могут быть универсальные (У) – формирующие сплошную и распыленную с изменяемым углом факела струи воды, а также струю ВМП, перекрывные, имеющие переменный расход;

Без индекса (У), формирующие сплошную струю воды и струю ВМП. Индекс приво-

дится после цифр, указывающих расход воды.

В зависимости от вида управления стволы могут быть с дистанционным (Д) или ручным (без индексаУ) управлением. Индекс приводится после букв ЛС .

Пример условного обозначения лафетного ствола ЛСД-С-40У где: ЛС – лафетный ствол, Д – с дистанционным управлением, С – стационарный, 40 – расход воды (л/с), У – универсальный.

Лафетный переносной ствол типа ПЛС-20П – предназначен для создания и направления струи воды или ВМП при тушении пожаров.

Состоит из приемного корпуса, поворотного тройника, двухрожкового разветвления, трубы, насадка. Приемный корпус закрепляется на съемной опоре (лафете), который сос-

тоит из двух симметрично изогнутых лап с шипами.

В приемном корпусе расположен обратный шарнирный клапан, позволяющий присоеди-

нять и заменять рукавные линии к напорному патрубку без прекращения работы ствола.

Поворотный корпус соединен с поворотным тройником, а он – с двухрожковым разветвлением. Поворотные соединения уплотнены кольцевыми резиновыми манжетами.

Внутри корпуса трубы установлен четырехполосной успокоитель (устройство, устраняющее явление вращения потока ОТВ поступающего из рукавов в ствол, которое ухудшает качество струи, т.е. разбивая сечение потока на несколько частей, способствует восстановлению осесимметричного распределения скоростей в потоке на параллельноструйное, не раздробленное).

Для подачи ВМП – водяной насадок на корпусе трубы заменяют на воздушно-пенный.

Технические характеристики:

- диаметр насадка, мм 22 28 32

Условное давление, кг/см² 6 6 6

- расход воды, л/с 19 23 30

- расход пены, м³/мин 12

- дальность струи, м:

воды 61 67 68

пены 32

- масса не более 27 кг

Ствол может вращаться вокруг вертикальной оси на 360º и перемещаться в вертикаль-

ной плоскости от 32 до 75º.

Техника безопасности при работе с лафетными стволами:

Стволы должны проходить ежегодное гидравлическое испытание давлением 0,8 МПа;

В процессе эксплуатации стволы должны регулярно обслуживаться и осматриваться, особенно шарниры и соединения;

При работе переносные стволы устанавливаются на ровную поверхность;

Работа с лафетным стволом осуществляется двумя пожарными.

Воздушно-пенные стволы: назначение, устройство, характеристика.

Техника безопасности при работе со стволами.

Воздушно-пенные стволы предназначены для получения из водного раствора пенообра-

зователя ВМП низкой кратности (до 20) и подачи ее в очаг пожара.

Стволы пожарные ручные СВПЭ и СВП имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасыва-

ния пенообразователя непосредственно у ствола из бака или др. емкости.

Ствол СВПЭ состоит из корпуса, на котором с одной стороны укреплена соединитель-

ная головка для подсоединения пожарного рукава, а с другой – кожух, в котором пенно-

образующий р-р перемешивается с воздухом и формируется пенная струя. В корпусе ствола имеется три камеры: приемная, вакуумная и выходная. На вакуумной камере рас-

положен ниппель диаметром 16 мм для присоединения шланга, через который всасывает-

ся пенообразователь.

Принцип работы ствола СВП: пенообразующий р-р, проходя через отверстия в корпусе, создает в конусной камере разряжение, благодаря чему воздух подсасывается через 8 отверстий, равномерно расположенных в кожухе ствола и интенсивно перемешивается

с пенообразующим раствором, образуя на выходе струю ВМП.

Работа ствола СВПЭ отличается от работы ствола СВП тем, что в приемную камеру пос-

тупает не пенообразующий р-р, а вода, которая, проходя по центральному отверстию, соз-

дает разряжение в вакуумной камере и в нее через ниппель подсасывается пенно-

образователь.

Воздушно-пенные стволы надежны в работе. Пена низкого качества может образоваться из-за засорения центрального отверстия, попадания в камеры посторонних предметов или применение ПО с пониженными свойствами.

Технические характеристики стволов СВП-2 (СВПЭ-2), СВП-4 (СВПЭ-4), СВП-8(СВПЭ-8 ) соответственно: - напор 40-60 м; концентрация р-ра 6% ; кратность пены – 8 ; производительность 2,4,8 м³/мин : дальность подачи 15,18,20 м.

Требования безопасности при работе с воздушно-пенными стволами не отличаются от требований безопасности при работе с ручными пожарными стволами. При заправке аобиля ПО л/с подразделения должен быть обеспечен защитными очками, непромока-

емыми рукавицами и защитной одеждой. При попадании на кожные покровы и в глаза – ПО смывается чисто водой или физраствором (2%-ая борная кислота).

Министерство Внутренних Дел
Российской Федерации

Государственная противопожарная служба

Нормы пожарной безопасности

Техника пожарная.
Стволы пожарные воздушно-пенные.
Общие технические требования. Методы
испытаний

НПБ 189-00

Москва 2000

Разработаны Федеральным государственным учреждением “Всероссийский ордена “Знак Почета” научно-исследовательский институт противопожарной обороны Министерства внутренних дел Российской Федерации” (ФГУ ВНИИПО МВД России) (В.А. Варганов, Е.А. Синельникова, С.Н. Фролов).

Внесены и подготовлены к утверждению отделом пожарной техники и вооружения Главного управления Государственной противопожарной службы (ГУГПС) МВД России (А.И. Жук, В.В. Жидовленков).

Вводятся впервые.

МИНИСТЕРСТВО ВНУТРЕННИХ ДЕЛ
РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННАЯ ПРОТИВОПОЖАРНАЯ СЛУЖБА

НОРМЫ ПОЖАРНОЙ БЕЗОПАСНОСТИ

ТЕХНИКА ПОЖАРНАЯ.
СТВОЛЫ ПОЖАРНЫЕ ВОЗДУШНО-
ПЕННЫЕ. ОБЩИЕ ТЕХНИЧЕСКИЕ
ТРЕБОВАНИЯ. МЕТОДЫ ИСПЫТАНИЙ

Fire-fighting equipment.
Air-foam nozzles.
General technical requirements. Test methods

НПБ 189-00

Дата введения 01.10.2000 г.

1. Область применения

1.1. Настоящие нормы пожарной безопасности (далее - нормы) распространяются на пожарные воздушно-пенные стволы (далее - стволы), предназначенные для формирования и направления струй воздушно-механической пены низкой кратности, а также низкой и средней кратности (комбинированные) при тушении пожаров.

1.2. Настоящие нормы устанавливают общие технические требования к стволам, методы их испытаний и могут использоваться при сертификации в области пожарной безопасности.

2. Термины и определения

2.1. В настоящих нормах используются следующие термины с соответствующими определениями.

2.1.1. Воздушно-пенный ствол - ручной пожарный ствол, предназначенный для формирования и направления струй воздушно-механической пены низкой кратности или низкой и средней кратности при тушении пожаров.

2.1.2. Рабочее давление - давление, МПа (кгс/см 2), при котором обеспечивается работоспособность ствола.

2.1.3. Расход раствора пенообразователя - количество раствора, проходящее через ствол при рабочем давлении за определенное время.

2.1.4. Кратность пены - отношение объема пены к объему раствора пенообразователя, содержащегося в пене.

2.1.5. Эжектирующее устройство - устройство, обеспечивающее подачу пенообразователя, который смешивается с подаваемым потоком воды, образуя водный раствор пенообразователя.

2.1.6. Демпфер - устройство или приспособление, предназначенное для поглощения энергии колебаний либо уменьшения их амплитуды.

2.1.7. Срок сохраняемости - по ГОСТ 27.410.

2.1.8. Условный проход - по ГОСТ 28338.

2.1.9. Ширина клыка - по ГОСТ 28352.

3. Классификация. Номенклатура показателей

3.1. Стволы, изготавливаемые в России, в зависимости от кратности получаемой воздушно-механической пены, наличия перекрывного устройства, эжектирующего устройства, расхода раствора пенообразователя подразделяются на типы:

а) СВП - стволы для получения пены низкой кратности, без перекрывного устройства;

б) СВПП-8 - стволы для получения пены низкой кратности, с перекрывным устройством;

в) СВПК-2, СВПК-4 - комбинированные стволы (низкая и средняя кратность пены) с перекрывным устройством;

г) СВПЭ-2, СВПЭ-4, СВПЭ-8 - стволы для получения пены низкой кратности, с эжектирующим устройством.

Показатель

Тип ствола

СВП

СВПК-2

СВПК-4

СВПП-8

Рабочее давление, МПа (кгс/см 2)

0,4-0,6

(4,0-6,0)

0,4-0,6

(4,0-6,0)

0,4-0,6

(4,0-6,0)

0,4-0,6

(4,0-6,0)

Расход раствора пенообразователя, л/с, не менее

14,0

Кратность пены, не менее:

низкая

средняя

низкой кратности

средней кратности

Условный проход соединительной головки, мм

Показатель

Тип ствола

СВПЭ-2

СВПЭ-4

СВПЭ-8

Рабочее давление, МПа (кгс/см 2), не менее

0,6 (6,0)

0,6 (6,0)

0,6 (6,0)

Расход воды, л/с, не менее

Расход пенообразователя, в % к расходу воды

Кратность пены, не менее

Дальность струи пены (по крайним каплям), м, не менее

Условный проход соединительной головки, мм

Примечание . Циклом следует считать: для стволов СВП, СВПЭ - подачу воды через ствол с постепенным повышением давления до (0,6 + 0,01) МПа [(6 + 0,1) кгс/см 2 ], выдержку при этом давлении в течение (50 +10) с, снижение давления до нуля; для стволов СВПК - полное открывание и закрывание перекрывного устройства с выдержкой в течение (30 ± 5) с в положении “пена низкой кратности” и (180 ± 5) с в положении “пена средней кратности” при подаче воды под давлением до (0,5 + 0,01) МПа [(5 + 0,1) кгс/см 2 ]; для ствола СВПП - полное открывание и закрывание перекрывного устройства с выдержкой в течение (30 ± 5) с в положении “закрыто” при подаче воды под давлением до (0,5 + 0,01) МПа [(5 + 0,1) кгс/см 2 ].

4.10.1. На каждый ствол должна быть нанесена маркировка, содержащая следующие данные:

а) наименование или товарный знак предприятия-изготовителя;

б) условное обозначение ствола по системе предприятия-изготовителя;

в) год выпуска;

г) рабочее давление.

4.10.2. Входящие в состав маркировки условные обозначения и надписи на импортируемых стволах должны быть на русском языке и нанесены в соответствии с требованиями, установленными изготовителем и указанными в технической документации.

4.10.3. Метод нанесения маркировки должен обеспечивать ее сохранность в течение срока службы ствола.

5. Правила приемки

(Измененная редакция. ).

5.2. Приемочные (межведомственные приемочные) испытания

5.2.1. Испытания проводят в целях определения соответствия опытных образцов стволов требованиям настоящих норм, технической документации, а также для решения вопроса о возможности постановки изделия на серийное производство и согласования технической документации.

5.2.2. На испытания предъявляют три ствола одного типа, выбранные методом случайного отбора из числа образцов, прошедших предварительные испытания на предприятии-изготовителе.

5.2.3. Результаты испытаний считаются положительными, если значения показателей, полученных при испытаниях, полностью соответствуют требованиям настоящих норм и технической документации.

5.3. Периодические испытания

5.3.1. Периодические испытания следует проводить не реже раза в год на трех стволах каждого типа.

5.3.2. Испытаниям подвергают образцы, выбранные из числа стволов, изготовленных за контролируемый период и выдержавших приемосдаточные испытания, в целях проверки соответствия их требованиям настоящих норм.

5.3.3. При получении положительных результатов испытаний подтверждается возможность дальнейшего производства стволов.

5.3.4. При получении неудовлетворительных результатов по любому из показателей хотя бы одного образца ствола испытания повторяют на удвоенном количестве вновь отобранных изделий. При повторном получении отрицательных результатов выпуск изделий должен быть приостановлен до выявления причин возникновения дефектов, их устранения и получения положительных результатов испытаний.

5.4. Типовые испытания

Типовые испытания проводят в целях проверки соответствия стволов требованиям настоящих норм при изменении их конструкции, технологии изготовления или замене материалов, которые могут повлиять на показатели назначения и надежности, а также для внесения соответствующих изменений в техническую документацию.

5.5. Испытания на надежность

5.5.1. Испытания на надежность следует проводить не реже одного раза в пять лет.

5.5.2. На испытания предъявляют образцы, выбранные методом случайного отбора из числа стволов, прошедших приемосдаточные испытания.

5.6. Сертификационные испытания

5.6.1. На сертификационные испытания предъявляют образцы, выбранные методом случайного отбора из числа стволов, прошедших приемосдаточные испытания на предприятии-изготовителе, в количестве не менее трех штук.

5.6.2. Результаты сертификационных испытаний считаются положительными, если значения всех показателей, полученные при испытаниях всех предъявленных образцов, полностью соответствуют требованиям настоящих норм.

5.6.3. При получении хотя бы одного отрицательного результата для любого из испытанных образцов этот результат считается окончательным и распространяется на всю предъявленную на испытания продукцию.

6. Методы контроля

6.1. Испытания должны проводиться при температуре, входящей в диапазон рабочих температур эксплуатации стволов, который указан в технической документации.

6.2. Для измерения давления перед стволом должны применяться манометры класса точности не ниже 0,6. Манометры должны быть выбраны так, чтобы при испытаниях значения давления находились в средней трети шкалы, а максимальное давление не превышало предела измерений.

Непосредственно перед манометром (на соединительной линии между местом отбора давления и манометром) должен быть установлен трехходовой кран для проливки линии измерения давления.

Для снижения колебаний стрелки прибора перед ним должен быть установлен демпфер.

6.3. Внешний осмотр

При осмотре стволов проверяют равномерность натяжения сеток (), комплектность (), соответствие обозначений и маркировки требованиям . Проверку проводят визуально и посредством анализа содержания информации.

6.4. Проверку по, (, ; , , ), , , проводят посредством анализа технической документации.

6.5. Гидравлические испытания стволов () проводят при открытых перекрывных устройствах, заглушенных соплах и эжектирующих пенообразователь отверстиях. Время выдержки под давлением не менее 2 мин. Появление следов воды в виде капель, течи на наружных поверхностях деталей и в местах соединений не допускается (кроме незначительных протечек в местах заглушения).

6.6. Герметичность перекрывных устройств () проверяют при их закрытом положении. Время выдержки под давлением не менее 2 мин.

Утечку воды определяют с помощью устройств для отвода и сбора воды. Объем утечки измеряют с точностью до 5 %.

Время определяют с точностью до 1 с.

6.7. Проверка усилий, прикладываемых к ручкам управления перекрывными устройствами

Проверку усилий, прикладываемых к ручкам управления перекрывными устройствами (), проводят при подаче в ствол воды под рабочим давлением. Для измерения усилия необходимо ручку управления заменить шкивом с радиусом, равным линейному размеру ручки, намотать на него нить, имеющую достаточную для проведения измерений гибкость и прочность. Один конец нити следует закрепить на шкиве, а другой присоединить к динамометру. При замерах ось приложения усилий динамометра должна быть перпендикулярна оси шки ва.

Величину усилия определяют по показанию динамометра с точностью до 0,1 кгс.

6.8. Проверка сеток стволов

Контроль проводят через каждые 100 циклов.

7. Нормативные ссылки

ЕСКД. Стадии разработки.

Система разработки и постановки продукции на производство. Продукция производственно-технического назначения.

ГОСТ 27.410-87 Надежность в технике. Методы контроля показателей надежности и планы контрольных испытаний на надежность.

ГОСТ 28338-89 Соединения трубопроводов и арматура. Проходы условные (размеры номинальные). Ряды.

ГОСТ 28352-89 Е Головки соединительные для пожарного оборудования. Типы. Основные параметры и размеры.

ГОСТ Р 50588-93 Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний.

РД 50-204-87 Методические указания. Надежность в технике. Сбор и обработка информации о надежности изделий в эксплуатации. Основные положения.

Читайте также: